Construction of Arakelov-modular lattices over totally definite quaternion algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions of Orthonormal Lattices and Quaternion Division Algebras for Totally Real Number Fields

We describe some constructions of orthonormal lattices in totally real subfields of cyclotomic fields, obtained by endowing their ring of integers with a trace form. We also describe constructions of quaternion division algebras over such fields. Orthonormal lattices and quaternion division algebras over totally real fields find use in wireless networks in ultra wideband communication, and we d...

متن کامل

Trees, Quaternion Algebras and Modular Curves

We study the action on the Bruhat-Tits tree of unit groups of maximal orders in certain quaternion algebras over Fq(T ) and discuss applications to arithmetic geometry and group theory.

متن کامل

On Finiteness Conjectures for Modular Quaternion Algebras

It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...

متن کامل

Quaternion Algebras: History, Construction, and Application

In October 1843, William Rowan Hamilton obsessed over a dilemma proposed by his son at breakfast, that of multiplying “triplets”, or merely sets of three objects [1]. The better part of two centuries later, a method for such an operation may seem obvious. We have cross products and dot products for vectors, as well as fields of polynomials among other structures that involve multiplying objects...

متن کامل

A Gross-Zagier formula for quaternion algebras over totally real fields

We prove a higher dimensional generalization of Gross and Zagier’s theorem on the factorization of differences of singular moduli. Their result is proved by giving a counting formula for the number of isomorphisms between elliptic curves with complex multiplication by two different imaginary quadratic fields K and K′, when the curves are reduced modulo a supersingular prime and its powers. Equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2017

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s1793042117501020